Strategy to Develop a 3D Ocean Circulation Forecasting System for Cook Inlet

Yi Chao
Jet Propulsion Laboratory
California Institute of Technology

&

Joint Institute for Regional Earth System Science and Engineering (JIFRESSE)
University of California at Los Angeles
Observations from this morning’s session

• “All models are wrong”
Observations from this morning’s session

• “All models are wrong”
 – “No model is perfect”
Observations from this morning’s session

• “All models are wrong”
 – “No model is perfect”

• “I put my data on the web, therefore mission accomplished”
 – Three models: Atmosphere models, wave models, 3D circulation models
 – Each model has multiple ensembles
 – Someone will give us data in a memory stick
 – More data web sites
Observations from this morning’s session

• “All models are wrong”
 – “No model is perfect”

• “Modelers put their data on the web”, therefore mission accomplished
 – Three models: Atmosphere models, wave models, 3D circulation models
 – Each model has multiple ensembles
 – Someone will give us data in a memory stick
 – More data web sites
 – Imagine a day with a single CI portal where you can get all these data sets and model output in a common format
A 3D Ocean Circulation Forecasting System Should consist of

- A 3D ocean circulation model (tides, wet/dry, ice)
- Atmospheric forcing (wind, heat, rain) from a high-resolution model
- Fresh-water forcing (rivers, runoff) from a hydrological model
- Lateral boundary conditions from a large-scale 3D ocean circulation model (with tides)
- Observational data sets (surface & subsurface, T/S & current)
- Advanced and computational efficient data assimilation scheme
A 3D Ocean Circulation Forecasting System for Stakeholder/User Should also Include

• Systematic validation with quantifiable uncertainties
• Ability and standard/easy interface to link biogeochemical, ecosystem and fishery modeling modules
• Stakeholder/user driven products based on model variables (e.g., transport, energy density)
• Access to model output with common interface (web, apps), standard formats (OpenDAP, Excel), and tools for analysis (times series over 1- or 2-year)
Brief Overview of a ROMS-Based Ocean Forecast System for Application Users

- Core support from NASA Physical Oceanography program and Advanced Supercomputing System
- Monterey Bay field experiments in 2003 and 2006, 2002-2010, Office of Naval Research
- Coastal Ocean Current Mapping Program (COCMP), 2006-2010, California State Coastal Conservancy
- Southern California Coastal Ocean Observing System (SCCOOS) 24/7 forecasting, 2006-present, NOAA/IOOS
- Central and Northern California Ocean Observing System (CeNCOOS), 2009-present, NOAA/IOOS
- Mid-Atlantic Coastal Ocean Observing System (MARCOOS) field experiment in 2009, NOAA/IOOS-NSF

http://ourocean.jpl.nasa.gov/
MB06, PWS09, CI, SCB
Regional Ocean Modeling System (ROMS)

Horizontal Resolution
L0: 10-km
L1: 3.6-km
L2: 1.2-km

Vertical Resolution
40 layers
WRF Weather Forecast

http://ourocean.jpl.nasa.gov/PWS09

(WRF by Peter Olsson)
Freshwater discharge by a hydrological model vs. Copper River observations

WRF Precipitation

DEM

Freshwater input to ROMS from point sources (rivers) and line sources (runoff)
ROMS Data Assimilation to enable forecasting

State of Ocean (e.g., T, S, Current)

Forecast

Nowcast

Observations

True Ocean

Ensemble Forecast Error

Time

T

T+ 6

T+ 48
3DVAR Data Assimilation to assimilate both in situ and remote sensed data

\[
\begin{aligned}
&S \\
&u \\
&v \\
&T \\
&S \\
\end{aligned}
\]

\[
\begin{aligned}
&x = v = x_{uv} \\
&x = x_{TS} \\
&x = x_{TS} \\
&x = x_{TS} \\
&x = x_{TS} \\
\end{aligned}
\]

Geostrophic balance

Hydrostatic equation

Five Control Variables:
- Temperature: δT
- Salinity: δS
- Non-steric SSH: $\delta X_{a\zeta}$
- Ageostrophic streamfunction: δX_{aw}
- Ageostrophic velocity potential: $\delta X_{a\chi}$

(Li and Chao et al., MWR, 2006; JGR-Ocean, 2008; JAOT, 2009)
Cross-Correlation between Variables & Spatial Varying Correlations (Monthly)

- Temperature and salinity data (e.g., CTDs) will influence current
- Surface data (e.g., aircraft or satellite SST) will influence subsurface structure
Validation of HF Radar Data Assimilation: Radial vs Total Current

Total currents data assimilation (circle)

1st Guess before data assimilation (blue)

Nowcast after data assimilation (red)

Radial current data assimilation (triangle)
Validation of T/S: ROMS vs OBS

Temp Bias: -0.28 C
Temp RMS: 0.82 C

Salinity Bias: +0.35 PSU
Salinity RMS: 0.77 PSU
ROMS Ensemble Forecast for Error Estimation

The mean pldistance from the ROMS ensembles to selected USCG drifter locations

Distance (km)

Hours since deployed
07/20/2009 - The south-central coast of Alaska has been under the influence of a slow moving low-pressure system south of the Kenai peninsula. A frequent consequence of such lows is a southeasterly coastal jet extending north from SE Alaska and terminating near the PWS. As a result, strong east to southeast winds up to 15 knots continue today across most of the PWS. These winds are forecast to persist in direction with only modest weakening over the next 24 hours or so. As is typical in these jet and decaying-jet situations, PWS-WRF is slightly overestimating the low level wind speeds. We will again defer commentary on the circulation and predicted drifter trajectories until tomorrow as the ROMS circulation is adjusting to newly-corrected atmospheric forcing. We note that the ship CTD profiles gathered yesterday are being assimilated. The tidal range will continue to increase during the coming 48 hours. At Valdez, this range will be close to 19 feet. The high water (8 feet) will be reached around 1AKDT and low water (~9.5 feet) around 8AKDT. At Whittier, the tidal range will be around 19 feet. At Cordova, it will be around 16 feet. Operationally, the major issue today was a significant delay in completing the ROMS nowcast and forecast due to issues related to the correction of the atmospheric forcing.

Click here to view a more detailed PWS daily summary.
Observational Assets: Updated Daily
http://ourocean.jpl.nasa.gov/PWS09
PWS ROMS Forecast: Access 3D output
http://ourocean.jpl.nasa.gov/PWSS09
Linking PWS ROMS with Biogeochemical Model
Mid-Atlantic Coastal Ocean Observing System (MARCOOS) Field Experiment (Nov 2-13 2009)

HOPS-UMass, NYHOPS/POM-SIT, ROMS/USGS, ROMS/4DVAR-Rutgers

Multi-Model Ensemble & Error
Glider Data (ru05) vs. Four Models (11/10)

Temperature Profiles

Model A

Model B

Model C

Model D

Salinity Profiles
Web-Based Virtual Drifter Tracker
http://ourocean.jpl.nasa.gov/PWS09
** GNOME Online Oceanographic Data Server (GOODS) **

Use GOODS to access currents or winds from various models and data sources and convert to GNOME compatible NetCDF.

<table>
<thead>
<tr>
<th>Global Ocean Current Models</th>
<th>Regional Ocean Current Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy Coastal Ocean Model (NCOM)
Naval Research Laboratory 1/8 degree operational model</td>
<td>West Coast:
 Southern California Bight
ROMS forecasting system run at Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Navy Layered Ocean Model (NL0M)
Naval Research Laboratory 1/32 degree operational model</td>
<td>Gulf of Mexico:
 TGLO/TAMU Gulf of Mexico
ROMS operational model developed at Texas A&M University and run operationally by the Texas General Land Office
NOAA Gulf of Mexico (NGOM)
Operational forecast model run at CSDL
Intra-Americas Sea Nowcast/Forecast System (IASNFS)
Naval Research Lab experimental real-time forecasting system</td>
</tr>
<tr>
<td>Hybrid Coordinate Ocean Model (HYCOM)
Naval Research Laboratory 1/12 degree model</td>
<td>East Coast:
 MARCOOS/HOPS
Mid-Atlantic Regional Observation System - Harvard Ocean Prediction System
New York Harbor Observing and Prediction System (NYHOPS)
Operational forecast system for New York and New Jersey including Hudson River Estuary run at Stevens Institute of Technology</td>
</tr>
<tr>
<td>Measured currents</td>
<td>Other:
 Hawaiian Islands
ROMS forecast model under development at University of Hawaii
Center for Operational Oceanographic Products and Services
Various operational nowcast/forecast models for U.S. inland and coastal waters</td>
</tr>
<tr>
<td>Coastal HF radar
Served by the National Data Buoy Center</td>
<td></td>
</tr>
<tr>
<td>Geostrophic currents
Sea Surface Height derived currents</td>
<td></td>
</tr>
<tr>
<td>Winds</td>
<td></td>
</tr>
<tr>
<td>National Weather Service Forecast Winds
Wind forecast from the NWS National Digital Forecast Database.</td>
<td></td>
</tr>
<tr>
<td>National Data Buoy Center Winds
Wind data from the National Data Buoy Center.</td>
<td></td>
</tr>
</tbody>
</table>

GOODS toolbar: Extract Coastline
Final Remarks

• Transition from research to 24/7/365 operations

• Continue to reach out to the application users (beyond scientists)
 – Identify users
 – Develop data/model products
 – Deliver forecast
 – Collect feedback

• Continue to improve the model, data assimilation and the end-to-end system
What can we learn from weather forecast?

First operational NWP in 1955 sponsored by U.S. Air Force, Navy, and Weather Bureau

Observing

NOAA National Weather Service: $>1B/year

Forecast

Private service (112+): $200M/yr +5%/yr

Increasing Skill of Numerical Weather Forecasts

Establish an ongoing forecast system with enough users to justify its operation and further development

Forecast skill has improved steadily due to increased computing, better models and assimilation ⇒ increased satellite data usage!